Symmetries of graphs

Ademir Hujdurović (University of Primorska, Slovenia)

Workshop on Graph Theory and Its Applications VI

18.11.2016.
2017 PhD Summer School in Discrete Mathematics
Two minicourses led by:
Endre Boros (Rutgers University, USA), and
Robin Wilson (Open University, United Kingdom).
All questions should be sent to sygn@upr.si
Overview

- Graph isomorphism problem
- Automorphism group of a graph
- Asymmetric graphs
- Graphs with large degree of symmetry
A graph is an ordered pair $X = (V, E)$, where V denotes the set of vertices, and E denotes the set of edges of the graph X.

$V = \{1, 2, 3, 4, 5\}$;

$E = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{2, 4\}, \{4, 5\}, \{1, 5\}\}$

We consider only finite, simple, undirected graphs.
What is the difference between the two graphs below?

For such graphs we say that they are ISOMORPHIC.
Isomorphic graphs

What is the difference between the two graphs below?

Only in the name of the vertices.
What is the difference between the two graphs below?

Only in the name of the vertices. For such graphs we say that they are **ISOMORPHIC**.
Isomorphic graphs

Definition

We say that graphs $X_1 = (V_1, E_1)$ and $X_2 = (V_2, E_2)$ are **ISOMORPHIC** if there exists a **bijective** function $f : V_1 \to V_2$, such that

$$(\forall u, v \in V_1) \{u, v\} \in E_1 \iff \{f(u), f(v)\} \in E_2.$$

We write $X_1 \cong X_2$. Function f is called **ISOMORPHISM**.
Isomorphic graphs

Definition

We say that graphs $X_1 = (V_1, E_1)$ and $X_2 = (V_2, E_2)$ are **ISOMORPHIC** if there exists a **bijective** function $f : V_1 \rightarrow V_2$, such that

$$(\forall u, v \in V_1) \{u, v\} \in E_1 \iff \{f(u), f(v)\} \in E_2.$$

We write $X_1 \cong X_2$. Function f is called **ISOMORPHISM**.
Isomorphic graphs

Definition

We say that graphs $X_1 = (V_1, E_1)$ and $X_2 = (V_2, E_2)$ are \textbf{ISOMORPHIC} if there exists a \textbf{bijective} function $f : V_1 \rightarrow V_2$, such that

$$(\forall u, v \in V_1) \{u, v\} \in E_1 \Leftrightarrow \{f(u), f(v)\} \in E_2.$$

We write $X_1 \cong X_2$. Function f is called \textbf{ISOMORPHISM}.

Function $f : \{1, 2, 3, 4\} \rightarrow \{A, B, C, D\}$, defined with $f(1) = B$, $f(2) = A$, $f(3) = D$, $f(4) = C$ is isomorphism.
Complement of a graph

Definition

Let $X = (V, E)$ be a graph. A **COMPLEMENT** of the graph X, is the graph $\overline{X} = (V, \overline{E})$, where for $u, v \in V (u \neq v)$

$$\{u, v\} \in \overline{E} \iff \{u, v\} \notin E.$$
Complement of a graph

Definition
Let $X = (V, E)$ be a graph. A COMPLEMENT of the graph X, is the graph $X' = (V, E')$, where for $u, v \in V (u \neq v)$

$$\{u, v\} \in E' \iff \{u, v\} \notin E.$$

Theorem
Two graphs X and Y are isomorphic if and only if their complements X' and Y' are isomorphic.
Are the following two graphs isomorphic?
Are the following two graphs isomorphic?

We look at the complements.
Graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic.
Graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic.

The problem is neither known to be solvable in polynomial time nor NP-complete.
Graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic.

The problem is neither known to be solvable in polynomial time nor NP-complete.

At the same time, isomorphism for many special classes of graphs can be solved in polynomial time, and in practice graph isomorphism can often be solved efficiently (for example trees, planar graphs, graphs of bounded degree, graphs of bounded treewidth...).
Graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic.

The problem is neither known to be solvable in polynomial time nor NP-complete.

At the same time, isomorphism for many special classes of graphs can be solved in polynomial time, and in practice graph isomorphism can often be solved efficiently (for example trees, planar graphs, graphs of bounded degree, graphs of bounded treewidth...).

In 2015, Babai announced a quasipolynomial time algorithm for all graphs, that is, one with running time $2^{O((\log n)^c)}$ for some fixed $c > 0$.
Problem

Determine the number of non-isomorphic graphs with n vertices.
Problem

> Determine the number of non-isomorphic graphs with n vertices.

Let g_n denote the number of non-isomorphic graphs of order n.
Problem

Determine the number of non-isomorphic graphs with \(n \) vertices.

Let \(g_n \) denote the number of non-isomorphic graphs of order \(n \).

\(n = 2, \ g_n = 2 \)
Enumerating non-isomorphic graphs

Problem

Determine the number of non-isomorphic graphs with n vertices.

Let g_n denote the number of non-isomorphic graphs of order n.

$n = 2, \quad g_n = 2$

- \begin{align*}
 & 1 \quad 2 \\
 & 3 \quad 2
\end{align*}

$n = 3, \quad g_n = 4$

- \begin{align*}
 & 1 \\
 & 3 \quad 2
\end{align*}

- \begin{align*}
 & 1 \quad 1 \\
 & 3 \quad 2
\end{align*}

- \begin{align*}
 & 1 \quad 1 \\
 & 3 \quad 2
\end{align*}

- \begin{align*}
 & 1 \quad 1 \\
 & 3 \quad 2
\end{align*}
Enumerating non-isomorphic graphs

\[n = 4, \quad g_n = 11 \]

![Graphs](image)
The problem of determining the number of non-isomorphic graphs with \(n \) vertices was first considered by Redfield in 1927.
The problem of determining the number of non-isomorphic graphs with n vertices was first considered by Redfield in 1927.

The same problem was tackled latter by Polya, who developed the famous Polya enumeration theorem, with the use of which he was able to determine the number of graphs with a given number of vertices and edges.

Before presenting Polya’s result, we need to introduce some terminology.
The problem of determining the number of non-isomorphic graphs with n vertices was first considered by Redfield in 1927.

The same problem was tackled latter by Polya, who developed the famous Polya enumeration theorem, with the use of which he was able to determine the number of graphs with a given number of vertices and edges.

Before presenting Polya’s result, we need to introduce some terminology.

With S_n we denote the group of all permutations of the set $\{1, 2, \ldots, n\}$. Observe that $|S_n| = n!$.
The problem of determining the number of non-isomorphic graphs with \(n \) vertices was first considered by Redfield in 1927.

The same problem was tackled latter by Polya, who developed the famous Polya enumeration theorem, with the use of which he was able to determine the number of graphs with a given number of vertices and edges.

Before presenting Polya’s result, we need to introduce some terminology.

With \(S_n \) we denote the group of all permutations of the set \(\{1, 2, \ldots, n\} \). Observe that \(|S_n| = n! \).

Every permutation can be written uniquely as a product of disjoint cycles (up to the order of factors).
The problem of determining the number of non-isomorphic graphs with n vertices was first considered by Redfield in 1927.

The same problem was tackled latter by Polya, who developed the famous Polya enumeration theorem, with the use of which he was able to determine the number of graphs with a given number of vertices and edges.

Before presenting Polya’s result, we need to introduce some terminology.

With S_n we denote the group of all permutations of the set $\{1, 2, \ldots, n\}$. Observe that $|S_n| = n!$.

Every permutation can be written uniquely as a product of disjoint cycles (up to the order of factors).

$$g = (1\ 2\ 3\ 4\ 5\ 6) = (1)(2\ 5\ 3)(4\ 6).$$
A partition of a positive integer n, (also called an integer partition), is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition.
A partition of a positive integer n, (also called an integer partition), is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. For example, $n = 4$ can be partitioned in the following way:

4
1 + 3
2 + 2
1 + 1 + 2
1 + 1 + 1 + 1
A partition of a positive integer n, (also called an integer partition), is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. For example, $n = 4$ can be partitioned in the following way:

4

$1 + 3$

$2 + 2$

$1 + 1 + 2$

$1 + 1 + 1 + 1$

Let a partition of a positive integer n be denoted by the vector $(c) = (c_1, \ldots, c_n)$, where c_k is the number of parts in the partition of size k.
A partition of a positive integer n, (also called an integer partition), is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. For example, $n = 4$ can be partitioned in the following way:
\[
\begin{align*}
4 &= (0, 0, 0, 1) \\
1 + 3 &= (1, 0, 1, 0) \\
2 + 2 &= (0, 2, 0, 0) \\
1 + 1 + 2 &= (2, 1, 0, 0) \\
1 + 1 + 1 + 1 &= (4, 0, 0, 0)
\end{align*}
\]
Let a partition of a positive integer n be denoted by the vector $(c) = (c_1, \ldots, c_n)$, where c_k is the number of parts in the partition of size k.
A **partition** of a positive integer n, (also called an integer partition), is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. For example, $n = 4$ can be partitioned in the following way:

$4 = (0, 0, 0, 1)$

$1 + 3 = (1, 0, 1, 0)$

$2 + 2 = (0, 2, 0, 0)$

$1 + 1 + 2 = (2, 1, 0, 0)$

$1 + 1 + 1 + 1 = (4, 0, 0, 0)$

Let a partition of a positive integer n be denoted by the vector $(c) = (c_1, \ldots, c_n)$, where c_k is the number of parts in the partition of size k.

Observe that $\sum_{k=1}^{n} kc_k = n$, and a permutation $g \in S_n$ can be associated with the vector $(c_1(g), \ldots, c_n(g))$.

Enumerating non-isomorphic graphs

A partition of a positive integer n, (also called an integer partition), is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. For example, $n = 4$ can be partitioned in the following way:

$4 = (0, 0, 0, 1)$

$1 + 3 = (1, 0, 1, 0)$

$2 + 2 = (0, 2, 0, 0)$

$1 + 1 + 2 = (2, 1, 0, 0)$

$1 + 1 + 1 + 1 = (4, 0, 0, 0)$

Let a partition of a positive integer n be denoted by the vector $(c) = (c_1, \ldots, c_n)$, where c_k is the number of parts in the partition of size k.

Observe that $\sum_{k=1}^{n} kc_k = n$, and a permutation $g \in S_n$ can be associated with the vector $(c_1(g), \ldots, c_n(g))$.

Ademir Hujdurović
Symmetries of graphs
For a given partition \((c) = (c_1, c_2, \ldots, c_n)\) of a positive integer \(n\) let

\[
\gamma(c) = \sum_k \left\lfloor \frac{k}{2} \right\rfloor c_k + \sum_k \frac{k c_k (c_k - 1)}{2} + \sum_{r < t} \gcd(r, t) c_r c_t.
\]
Enumerating non-isomorphic graphs

For a given partition \((c) = (c_1, c_2, \ldots, c_n)\) of a positive integer \(n\) let

\[
\gamma(c) = \sum_k \left\lfloor \frac{k}{2} \right\rfloor c_k + \sum_k \frac{kc_k(c_k - 1)}{2} + \sum_{r < t} \gcd(r, t)c_r c_t.
\]

Theorem (Polya, 1951)

The number of non-isomorphic graphs of order \(n\) equals

\[
g_n = \sum_{(c) = (c_1, \ldots, c_n)} \frac{2^\gamma(c)}{\prod k^{c_k} c_k!},
\]

where the sum goes throughout all the partitions \((c)\) of \(n\).
Enumerating non-isomorphic graphs

<table>
<thead>
<tr>
<th>n</th>
<th>Non-isomorphic graphs of order n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>156</td>
</tr>
<tr>
<td>7</td>
<td>1044</td>
</tr>
<tr>
<td>8</td>
<td>12346</td>
</tr>
<tr>
<td>9</td>
<td>274668</td>
</tr>
<tr>
<td>10</td>
<td>12005168</td>
</tr>
<tr>
<td>11</td>
<td>1018997864</td>
</tr>
<tr>
<td>12</td>
<td>165091172592</td>
</tr>
<tr>
<td>13</td>
<td>50502031367952</td>
</tr>
<tr>
<td>14</td>
<td>29054155657235488</td>
</tr>
<tr>
<td>15</td>
<td>31426485969804308768</td>
</tr>
<tr>
<td>16</td>
<td>64001015704527557894928</td>
</tr>
<tr>
<td>17</td>
<td>245935864153532932683719776</td>
</tr>
</tbody>
</table>
Let n be fixed and let vertex set of all graphs on n vertices be $V = \{1, \ldots, n\}$. There are $2^{\binom{n}{2}}$ graphs on n vertices (including also those that are isomorphic).
Let n be fixed and let vertex set of all graphs on n vertices be $V = \{1, \ldots, n\}$. There are $2^\binom{n}{2}$ graphs on n vertices (including also those that are isomorphic).

Let $\Omega = \{\{i, j\} \mid 1 \leq i < j \leq n\}$. (We can think of Ω as of the edge set of the complete graph on n vertices).
Let n be fixed and let vertex set of all graphs on n vertices be $V = \{1, \ldots, n\}$. There are $2^{\binom{n}{2}}$ graphs on n vertices (including also those that are isomorphic).

Let $\Omega = \{\{i, j\} \mid 1 \leq i < j \leq n\}$. (We can think of Ω as of the edge set of the complete graph on n vertices).

Let $X = (V, E)$ be an arbitrary graph with vertex set V. Then $E \subseteq \Omega$. Hence we can represent every graph with vertex set V uniquely as the subset of Ω, that is, there exists a bijection between the set of all graph on n vertices and the set $\mathcal{P}(\Omega)$.
Let \(n \) be fixed and let vertex set of all graphs on \(n \) vertices be \(V = \{1, \ldots, n\} \). There are \(2^{\binom{n}{2}} \) graphs on \(n \) vertices (including also those that are isomorphic).

Let \(\Omega = \{\{i, j\} \mid 1 \leq i < j \leq n\} \). (We can think of \(\Omega \) as of the edge set of the complete graph on \(n \) vertices).

Let \(X = (V, E) \) be an arbitrary graph with vertex set \(V \). Then \(E \subseteq \Omega \). Hence we can represent every graph with vertex set \(V \) uniquely as the subset of \(\Omega \), that is, there exists a bijection between the set of all graph on \(n \) vertices and the set \(\mathcal{P}(\Omega) \).

Every permutation \(g \in S_n \) induces a permutation of the set \(\Omega \). The corresponding permutation of \(\Omega \) is denoted by \(g^{(2)} \) and the corresponding permutation group is denoted by \(S_n^{(2)} \).
Two graphs $X_1 = (V, E_1)$ and $X_2 = (V, E_2)$ are isomorphic if and only if there exists $g \in S_n$ such that $g^{(2)}(E_1) = E_2$.

Therefore, the number of non-isomorphic graphs of order n is equal to the number of orbits in the action of S_n on $P(\Omega)$.

Theorem (Orbit-counting theorem (also called Cauchy-Frobenius or Burnside's))

Let G be a group acting on a set Δ. Then the number of orbits equals

$$1 |G| \sum_{g \in G} |\text{Fix} \Delta(g)|.$$

Here $\text{Fix} \Delta(g) = \{x \in \Delta | g(x) = x\}$.

Ademir Hujdurović
Symmetries of graphs
Two graphs $X_1 = (V, E_1)$ and $X_2 = (V, E_2)$ are isomorphic if and only if there exists $g \in S_n$ such that $g^{(2)}(E_1) = E_2$.

Therefore, the number of non-isomorphic graphs of order n is equal to the number of orbits in the action of $S_n^{(2)}$ on $\mathcal{P}(\Omega)$.
Two graphs $X_1 = (V, E_1)$ and $X_2 = (V, E_2)$ are isomorphic if and only if there exists $g \in S_n$ such that $g^{(2)}(E_1) = E_2$.

Therefore, the number of non-isomorphic graphs of order n is equal to the number of orbits in the action of $S_n^{(2)}$ on $\mathcal{P}(\Omega)$. How to determine the number of orbits?

Theorem (Orbit-counting theorem (also called Cauchy-Frobenius or Burnside's))

Let G be a group acting on a set Δ. Then the number of orbits equals $\frac{1}{|G|} \sum_{g \in G} |\text{Fix}\, \Delta(g)|$.

Here $\text{Fix}\, \Delta(g) = \{x \in \Delta | g(x) = x\}$.
Two graphs $X_1 = (V, E_1)$ and $X_2 = (V, E_2)$ are isomorphic if and only if there exists $g \in S_n$ such that $g^{(2)}(E_1) = E_2$.

Therefore, the number of non-isomorphic graphs of order n is equal to the number of orbits in the action of $S_n^{(2)}$ on $\mathcal{P}(\Omega)$. How to determine the number of orbits?

Theorem (Orbit-counting theorem (also called Cauchy-Frobenius or Burnside’s))

Let G be a group acting on a set Δ. Then the number of orbits equals

$$\frac{1}{|G|} \sum_{g \in G} |Fix_{\Delta}(g)|.$$

Here $Fix_{\Delta}(g) = \{x \in \Delta \mid g(x) = x\}$.
It follows that the number of non-isomorphic graphs of order n equals

\[\frac{1}{|S_n^{(2)}|} \sum_{g \in S_n^{(2)}} |\text{Fix}_{\mathcal{P}(\Omega)}(g)| = \frac{1}{n!} \sum_{g \in S_n^{(2)}} |\text{Fix}_{\mathcal{P}(\Omega)}(g)|. \]
It follows that the number of non-isomorphic graphs of order n equals

$$\frac{1}{|S_n^{(2)}|} \sum_{g \in S_n^{(2)}} |\text{Fix}_\mathcal{P}(\Omega)(g)| = \frac{1}{n!} \sum_{g \in S_n^{(2)}} |\text{Fix}_\mathcal{P}(\Omega)(g)|.$$

How to determine $|\text{Fix}_\mathcal{P}(\Omega)(g^{(2)})|$?
It follows that the number of non-isomorphic graphs of order n equals

$$\frac{1}{|S_n^{(2)}|} \sum_{g \in S_n^{(2)}} |\text{Fix}_P(\Omega)(g)| = \frac{1}{n!} \sum_{g \in S_n^{(2)}} |\text{Fix}_P(\Omega)(g)|.$$

How to determine $|\text{Fix}_P(\Omega)(g^{(2)})|$?

Example: Let $n = 4$, $g \in S_4$ given with $g = (1 \ 2)(3 \ 4)$.

Ademir Hujdurović
Symmetries of graphs
It follows that the number of non-isomorphic graphs of order n equals

$$\frac{1}{|S_n^{(2)}|} \sum_{g \in S_n^{(2)}} |\text{Fix}_{\mathcal{P}(\Omega)}(g)| = \frac{1}{n!} \sum_{g \in S_n^{(2)}} |\text{Fix}_{\mathcal{P}(\Omega)}(g)|.$$

How to determine $|\text{Fix}_{\mathcal{P}(\Omega)}(g^{(2)})|$?

Example: Let $n = 4$, $g \in S_4$ given with $g = (1\ 2)(3\ 4)$. We first determine the cyclic structure of $g^{(2)}$.
Enumerating non-isomorphic graphs

It follows that the number of non-isomorphic graphs of order n equals

$$\frac{1}{|S_n^{(2)}|} \sum_{g \in S_n^{(2)}} |\text{Fix}_P(\Omega)(g)| = \frac{1}{n!} \sum_{g \in S_n^{(2)}} |\text{Fix}_P(\Omega)(g)|.$$

How to determine $|\text{Fix}_P(\Omega)(g^{(2)})|$?

Example: Let $n = 4$, $g \in S_4$ given with $g = (1\ 2)(3\ 4)$.

We first determine the cyclic structure of $g^{(2)}$.

$$g^{(2)} = (\{1, 2\})(\{3, 4\})(\{1, 3\} \{2, 4\})(\{1, 4\} \{2, 3\}).$$
It follows that the number of non-isomorphic graphs of order n equals

$$\frac{1}{|S_n^{(2)}|} \sum_{g \in S_n^{(2)}} |Fix_{\mathcal{P}(\Omega)}(g)| = \frac{1}{n!} \sum_{g \in S_n^{(2)}} |Fix_{\mathcal{P}(\Omega)}(g)|.$$

How to determine $|Fix_{\mathcal{P}(\Omega)}(g^{(2)})|$?

Example: Let $n = 4$, $g \in S_4$ given with $g = (1\ 2)(3\ 4)$.

We first determine the cyclic structure of $g^{(2)}$.

$$g^{(2)} = (\{1, 2\})(\{3, 4\})(\{1, 3\} \{2, 4\})(\{1, 4\} \{2, 3\}).$$

If $E \subseteq \Omega$ is fixed by $g^{(2)}$, then one cycle in the cyclic decomposition of $g^{(2)}$ must be either completely contained in E, or completely outside of E. Hence $|Fix_{\mathcal{P}(\Omega)}(g)| = 2^4 = 16.$
It follows that the number of non-isomorphic graphs of order \(n \) equals
\[
\frac{1}{|S_n^{(2)}|} \sum_{g \in S_n^{(2)}} |\text{Fix}_{\mathcal{P}(\Omega)}(g)| = \frac{1}{n!} \sum_{g \in S_n^{(2)}} |\text{Fix}_{\mathcal{P}(\Omega)}(g)|.
\]

How to determine \(|\text{Fix}_{\mathcal{P}(\Omega)}(g^{(2)})| \)?

Example: Let \(n = 4 \), \(g \in S_4 \) given with \(g = (1 \ 2)(3 \ 4) \).

We first determine the cyclic structure of \(g^{(2)} \).

\[
g^{(2)} = (\{1, 2\})(\{3, 4\})(\{1, 3\} \ \{2, 4\})(\{1, 4\} \ \{2, 3\}).
\]

If \(E \subseteq \Omega \) is fixed by \(g^{(2)} \), then one cycle in the cyclic decomposition of \(g^{(2)} \) must be either completely contained in \(E \), or completely outside of \(E \). Hence \(|\text{Fix}_{\mathcal{P}(\Omega)}(g)| = 2^4 = 16 \).

In general \(|\text{Fix}_{\mathcal{P}(\Omega)}(g)| = 2^c \), where \(c \) is the number of cycles in cyclic decomposition of \(g^{(2)} \).
Lemma

If \(g \in S_n \) is a permutation that corresponds to the partition \((c) = (c_1, c_2, \ldots, c_n) \) (that is \(g \) has \(c_k \) cycles of length \(k \)) then there are \(\gamma(c) \) cycles in the cyclic decomposition of \(g^{(2)} \), where

\[
\gamma(c) = \sum_{k} \left\lfloor \frac{k}{2} \right\rfloor c_k + \sum_{k} \frac{k c_k (c_k - 1)}{2} + \sum_{r<t} \gcd(r, t)c_r c_t.
\]
Lemma

If $g \in S_n$ is a permutation that corresponds to the partition $(c) = (c_1, c_2, \ldots, c_n)$ (that is g has c_k cycles of length k) then there are $\gamma(c)$ cycles in the cyclic decomposition of $g^{(2)}$, where

$$
\gamma(c) = \sum_k \left\lfloor \frac{k}{2} \right\rfloor c_k + \sum_k \frac{k c_k (c_k - 1)}{2} + \sum_{r < t} \gcd(r, t) c_r c_t.
$$

Theorem (Polya, 1951)

The number of non-isomorphic graphs of order n equals

$$
g_n = \sum_{(c) = (c_1, \ldots, c_n)} \frac{2^{\gamma(c)}}{\prod k^{c_k} c_k!},
$$

where the sum goes throughout all the partitions (c) of n.

Ademir Hujdurović
Symmetries of graphs
Asymptotic formulas for the number of non-isomorphic graphs

Polya obtained the following formula for the asymptotic number of graphs g_n of order n:

Theorem (Polya)
The number of graphs of order n asymptotically equals to $2^{(n^2)} n!$.

Oberschelp in 1967 obtained a better approximation.

Theorem (Oberschelp)
$$g_n = 2^{(n^2)} n! \left(1 - \frac{2}{n^2} - \frac{n}{n^2} + \frac{8}{n^2} \left(\frac{3}{n^2} - \frac{7}{3}\right) \left(\frac{3}{n^2} - \frac{9}{3}\right) n^5 + O\left(\frac{n^5}{n^2}\right)\right).$$
Asymptotic formulas for the number of non-isomorphic graphs

Polya obtained the following formula for the asymptotic number of graphs g_n of order n:

Theorem (Polya)

The number of graphs of order n asymptotically equals to \(\frac{2^\binom{n}{2}}{n!} \).
Asymptotic formulas for the number of non-isomorphic graphs

Polya obtained the following formula for the asymptotic number of graphs g_n of order n:

Theorem (Polya)

The number of graphs of order n asymptotically equals to $\frac{2^{\binom{n}{2}}}{n!}$.

Oberschelp in 1967 obtained a better approximation.

Theorem (Oberschelp)

$$g_n = \frac{2^{\binom{n}{2}}}{n!} \left(1 - 2\frac{n^2 - n}{2^n} + \frac{8n!(3n - 7)(3n - 9)}{(n - 4)!2^{2n}} + O\left(\frac{n^5}{2^{5n/2}}\right)\right),$$
Definition

Let X be a graph. An **AUTOMORPHISM** of a graph X is isomorphism from X to X. In other words, automorphism is a permutation f of a vertex set of X, that preserves the edge set of X, that is

$$\{u, v\} \in E \iff \{f(u), f(v)\} \in E.$$

With $Aut(X)$ we denote the set of all automorphism of a graph X.
Let X be a graph. An **AUTOMORPHISM** of a graph X is isomorphism from X to X. In other words, automorphism is a permutation f of a vertex set of X, that preserves the edge set of X, that is

$$\{u, v\} \in E \iff \{f(u), f(v)\} \in E.$$

With $Aut(X)$ we denote the set of all automorphism of a graph X.

Example

The set $Aut(X)$ together with the operation \circ (composition of functions) is a group, and is called the **automorphism group** of X.
Graph automorphisms

Definition

Let X be a graph. An **AUTOMORPHISM** of a graph X is an isomorphism from X to X. In other words, automorphism is a permutation f of a vertex set of X, that preserves the edge set of X, that is

$$\{u, v\} \in E \Leftrightarrow \{f(u), f(v)\} \in E.$$

With $Aut(X)$ we denote the set of all automorphism of a graph X.

Example

The set $Aut(X)$ together with the operation \circ (composition of functions) is a group, and is called the **automorphism group** of X.

If a graph X has n vertices, then $Aut(X) \leq S_n$.
Graph automorphisms

Definition
Let X be a graph. An automated morphism of a graph X is isomorphism from X to X. In other words, automorphism is a permutation f of a vertex set of X, that preserves the edge set of X, that is

$$\{u, v\} \in E \iff \{f(u), f(v)\} \in E.$$

With $Aut(X)$ we denote the set of all automorphism of a graph X.

Example
The set $Aut(X)$ together with the operation \circ (composition of functions) is a group, and is called the automorphism group of X.

If a graph X has n vertices, then $Aut(X) \leq S_n$.
Note that automorphism preserves degree, distance between vertices etc.
Find all automorphisms of the graph below.

\[g_1 = \text{id} \text{ and } g_2 = (1 4) \].
Find all automorphisms of the graph below.

1
\[\begin{array}{c}
1 \\
\downarrow \\
2 \\
\downarrow \\
3 \\
\downarrow \\
4 \\
\end{array} \]

\(g_1 = id \) and \(g_2 = (1 \ 4) \).
Find all automorphisms of the graph below.

\[
\begin{align*}
\rho &= (1 \ 2 \ 3 \ 4 \ 5 \ 6) \\
\tau &= (1)(2\ 6)(3\ 5)(4)
\end{align*}
\]

\[\text{Aut}(C_6) = \langle \rho, \tau \rangle \cong D_{12}.\]

\[|\text{Aut}(C_6)| = 12.\]
Find all automorphisms of the graph below.

\[\rho = (1 \ 2 \ 3 \ 4 \ 5 \ 6) \text{ and } \tau = (1)(2\ 6)(3\ 5)(4) \]

\[\text{Aut}(C_6) = \langle \rho, \tau \rangle \cong D_{12}. \quad (|\text{Aut}(C_6)| = 12). \]
Asymmetric graphs

Definition

A graph X with at least two vertices such that $\text{Aut}(X) = \{id\}$ is called **ASYMMETRIC**.
Definition

A graph X with at least two vertices such that $\text{Aut}(X) = \{\text{id}\}$ is called **ASYMMETRIC**.

Example

Prove that the smallest asymmetric graph has 6 vertices.
Asymmetric graphs

Definition

A graph X with at least two vertices such that $\text{Aut}(X) = \{\text{id}\}$ is called **ASYMMETRIC**.

Example

Prove that the smallest asymmetric graph has 6 vertices.
Theorem

Almost all finite graphs are asymmetric, that is the ratio between the number of asymmetric graphs of order \(n \) and all graphs of order \(n \) tends to 1 as \(n \) grows.

This follows from the fact that the number of graphs of order \(n \) is asymptotically equal to \(\frac{2\binom{n}{2}}{n!} \).

Asymmetric graphs

Theorem

Almost all finite graphs are asymmetric, that is the ratio between the number of asymmetric graphs of order \(n \) and all graphs of order \(n \) tends to 1 as \(n \) grows.

This follows from the fact that the number of graphs of order \(n \) is asymptotically equal to \(\frac{2\binom{n}{2}}{n!} \).

Can any given group be automorphism group of some graph?
Asymmetric graphs

Theorem

Almost all finite graphs are asymmetric, that is, the ratio between the number of asymmetric graphs of order \(n\) and all graphs of order \(n\) tends to 1 as \(n\) grows.

This follows from the fact that the number of graphs of order \(n\) is asymptotically equal to \(\frac{2\binom{n}{2}}{n!}\).

Can any given group be automorphism group of some graph?

Theorem (Frucht, 1939)

For a given finite group \(G\), there exists infinitely many connected graphs \(X\) such that \(\text{Aut}(X) \cong G\).
Probably the best studied class of graphs having large automorphism group is the class of vertex-transitive graphs.
Probably the best studied class of graphs having large automorphism group is the class of vertex-transitive graphs.

Definition

A graph $X = (V, E)$ is called **VERTEX-TRANSITIVE** if

$$(\forall u, v \in V)(\exists f \in Aut(X)) f(u) = v.$$
Probably the best studied class of graphs having large automorphism group is the class of vertex-transitive graphs.

Definition

A graph $X = (V, E)$ is called **VERTEX-TRANSITIVE** if

$$(\forall u, v \in V)(\exists f \in Aut(X)) \ f(u) = v.$$

Example

Following graphs are vertex-transitive:

1. Complete graph K_n;
Probably the best studied class of graphs having large automorphism group is the class of vertex-transitive graphs.

Definition

A graph $X = (V, E)$ is called **VERTEX-TRANSITIVE** if

$$(\forall u, v \in V)(\exists f \in Aut(X)) \ f(u) = v.$$

Example

Following graphs are vertex-transitive:

1. Complete graph K_n;
2. C_n-cycle of length n;
Probably the best studied class of graphs having large automorphism group is the class of vertex-transitive graphs.

Definition

A graph $X = (V, E)$ is called **vertex-transitive** if

$$\forall u, v \in V (\exists f \in Aut(X)) f(u) = v.$$

Example

Following graphs are vertex-transitive:

1. Complete graph K_n;
2. C_n-cycle of length n;
3. Complete bipartite graph $K_{n,n}$;
Probably the best studied class of graphs having large automorphism group is the class of vertex-transitive graphs.

Definition
A graph $X = (V, E)$ is called **VERTEX-TRANSITIVE** if

$$(\forall u, v \in V)(\exists f \in Aut(X)) f(u) = v.$$

Example
Following graphs are vertex-transitive:

1. Complete graph K_n;
2. C_n-cycle of length n;
3. Complete bipartite graph $K_{n,n}$;
Examples of vertex-transitive graphs

Definition

Let n, k, and i be fixed positive integers, with $n > k > i$ let S be a fixed set of size n; and define $J(n, k, i)$ as follows. The vertices of $J(n, k, i)$ are the subsets of S with size k, where two subsets are adjacent if their intersection has size i. Therefore, $J(n, k, i)$ has $\binom{n}{k}$ vertices.

For $n > 2k$, the graphs $J(n, k, k-1)$ are known as the Johnson graphs, and the graphs $J(n, k, 0)$ are known as the Kneser graphs.

$J(5, 2, 0)$ is the Petersen graph.

Theorem

Graph $J(n, k, i)$ is vertex-transitive, for all values of n, k, and i.

Ademir Hujdurović

Symmetries of graphs
Definition

Let \(n, k, \) and \(i \) be fixed positive integers, with \(n > k > i \) let \(S \) be a fixed set of size \(n \); and define \(J(n, k, i) \) as follows. The vertices of \(J(n, k, i) \) are the subsets of \(S \) with size \(k \), where two subsets are adjacent if their intersection has size \(i \). Therefore, \(J(n, k, i) \) has \(\binom{n}{k} \) vertices.

For \(n > 2k \), the graphs \(J(n, k, k - 1) \) are known as the Johnson graphs, and the graphs \(J(n, k, 0) \) are known as the Kneser graphs. \(J(5, 2, 0) \) is the Petersen graph.
Examples of vertex-transitive graphs

Definition

Let n, k, and i be fixed positive integers, with $n > k > i$. Let S be a fixed set of size n, and define $J(n, k, i)$ as follows. The vertices of $J(n, k, i)$ are the subsets of S with size k, where two subsets are adjacent if their intersection has size i. Therefore, $J(n, k, i)$ has $\binom{n}{k}$ vertices.

For $n > 2k$, the graphs $J(n, k, k - 1)$ are known as the Johnson graphs, and the graphs $J(n, k, 0)$ are known as the Kneser graphs. $J(5, 2, 0)$ is the Petersen graph.

Theorem

*Graph $J(n, k, i)$ is vertex-transitive, for all values of n, k and i.***
Properties of vertex-transitive graphs

Definition

$X = (V, E)$-graph and v a vertex of X.

$N_X(v) = \{ u \in V \mid \{v, u\} \in E\}$ - NEIGHBOURHOOD of v in X.
Properties of vertex-transitive graphs

Definition

\(X = (V, E) \)-graph and \(v \) a vertex of \(X \).

\(N_X(v) = \{ u \in V \mid \{v, u\} \in E \} \) - NEIGHBOURHOOD of \(v \) in \(X \).

\(d_X(v) = |N_X(v)| \) - DEGREE of \(v \).
Definition

$X = (V, E)$-graph and v a vertex of X.

$N_X(v) = \{ u \in V \mid \{v, u\} \in E \}$ - NEIGHBOURHOOD of v in X.

$d_X(v) = |N_X(v)|$ - DEGREE of v.

X is REGULAR if all vertices have the same degree.
Properties of vertex-transitive graphs

Definition

$X = (V, E)$-graph and v a vertex of X.

$N_X(v) = \{ u \in V \mid \{v, u\} \in E \}$ - **NEIGHBOURHOOD** of v in X.

$d_X(v) = |N_X(v)|$ - **DEGREE** of v.

X is **REGULAR** if all vertices have the same degree.

Theorem

Every vertex-transitive graph is regular.
Properties of vertex-transitive graphs

Definition

\[X = (V, E) \text{-graph and } v \text{ a vertex of } X. \]
\[N_X(v) = \{ u \in V \mid \{v, u\} \in E \} \] - NEIGHBOURHOOD of \(v \) in \(X \).
\[d_X(v) = |N_X(v)| \] - DEGREE of \(v \).

\(X \) is REGULAR if all vertices have the same degree.

Theorem

Every vertex-transitive graph is regular.

Proof.

Let \(X = (V, E) \) be a vertex-transitive graph, and let \(u, v \in V \).
Properties of vertex-transitive graphs

Definition

\[X = (V, E) \]-graph and \(v \) a vertex of \(X \).

\[N_X(v) = \{ u \in V \mid \{v, u\} \in E \} \] - NEIGHBOURHOOD of \(v \) in \(X \).

\[d_X(v) = \vert N_X(v) \vert \] - DEGREE of \(v \).

\(X \) is REGULAR if all vertices have the same degree.

Theorem

Every vertex-transitive graph is regular.

Proof.

Let \(X = (V, E) \) be a vertex-transitive graph, and let \(u, v \in V \). Then there exists \(f \in Aut(X) \) such that \(f(u) = v \).
Properties of vertex-transitive graphs

Definition

- \(X = (V, E) \)-graph and \(v \) a vertex of \(X \).
- \(N_X(v) = \{ u \in V \mid \{v, u\} \in E \} \) - **NEIGHBOURHOOD** of \(v \) in \(X \).
- \(d_X(v) = |N_X(v)| \) - **DEGREE** of \(v \).
- \(X \) is **REGULAR** if all vertices have the same degree.

Theorem

Every vertex-transitive graph is regular.

Proof.

Let \(X = (V, E) \) be a vertex-transitive graph, and let \(u, v \in V \). Then there exists \(f \in Aut(X) \) such that \(f(u) = v \). Since automorphisms preserve edges, it follows that \(f(N_X(u)) = N_X(v) \).
Definition

$X = (V, E)$-graph and v a vertex of X.

$N_X(v) = \{u \in V \mid \{v, u\} \in E\}$ - NEIGHBOURHOOD of v in X.

$d_X(v) = |N_X(v)|$ - DEGREE of v.

X is REGULAR if all vertices have the same degree.

Theorem

Every vertex-transitive graph is regular.

Proof.

Let $X = (V, E)$ be a vertex-transitive graph, and let $u, v \in V$. Then there exists $f \in Aut(X)$ such that $f(u) = v$. Since automorphisms preserve edges, it follows that $f(N_X(u)) = N_X(v)$. Since f is bijective mapping, it follows that $|f(N_X(u))| = |N_X(u)|$. Hence $d_X(u) = d_X(v)$.
Is every regular graph vertex-transitive?
Properties of vertex-transitive graphs

Is every regular graph vertex-transitive? \textbf{NO.}

\textbf{Figure:} Frucht Graph is 3-regular asymmetric graph
Let n be a positive integer, and let $S \subseteq \{1, \ldots, n-1\}$ be a symmetric subset of $\{1, \ldots, n\}$, that is $S = -S$. A CIRCULANT graph $\text{Circ}(n; S)$ is the graph with vertex set $V = \{0, 1, \ldots, n-1\}$ and edge set

$$E = \{\{x, x + s\} \mid x \in V\}.$$
Definition

Let n be a positive integer, and let $S \subseteq \{1, \ldots, n - 1\}$ be a symmetric subset of $\{1, \ldots, n\}$, that is $S = -S$. A **circulant graph** $\text{Circ}(n; S)$ is the graph with vertex set $V = \{0, 1, \ldots, n - 1\}$ and edge set

$$E = \{\{x, x + s\} \mid x \in V\}.$$

Figure: $\text{Circ}(8, \{1, -1, 3, -3\})$
Theorem

Every circulant is vertex-transitive.
Theorem

Every circulant is vertex-transitive.

Proof.

Let $X = \text{Circ}(n, S)$ be an arbitrary circulant. Let

$$\rho = (0 \ 1 \ 2 \ \ldots \ n-1),$$

that is $\rho(x) = x + 1$, for every $x \in \mathbb{Z}_n$.

Theorem

Every circulant is vertex-transitive.

Proof.

Let $X = \text{Circ}(n, S)$ be an arbitrary circulant. Let $\rho = (0 \ 1 \ 2 \ \ldots \ n-1)$, that is $\rho(x) = x + 1$, for every $x \in \mathbb{Z}_n$. We claim that $\rho \in \text{Aut}(X)$.
Theorem

Every circulant is vertex-transitive.

Proof.

Let \(X = \text{Circ}(n, S) \) be an arbitrary circulant. Let
\(\rho = (0 \ 1 \ 2 \ \ldots \ n - 1) \), that is \(\rho(x) = x + 1 \), for every \(x \in \mathbb{Z}_n \). We claim that \(\rho \in \text{Aut}(X) \). It is clear that \(\rho \) is bijective mapping from \(\mathbb{Z}_n \) to \(\mathbb{Z}_n \).
Theorem

Every circulant is vertex-transitive.

Proof.

Let \(X = \text{Circ}(n, S) \) be an arbitrary circulant. Let \(\rho = (0 \ 1 \ 2 \ \ldots \ n - 1) \), that is \(\rho(x) = x + 1 \), for every \(x \in \mathbb{Z}_n \). We claim that \(\rho \in \text{Aut}(X) \). It is clear that \(\rho \) is bijective mapping from \(\mathbb{Z}_n \) to \(\mathbb{Z}_n \). Let \(\{x, y\} \) be an edge. This is equivalent with \(y = x + s \), for some \(s \in S \). Now it is clear that \(\rho(x) = x + 1 \) and \(\rho(y) = x + s + 1 = \rho(x) + 1 \). Hence \(\{x, y\} \in E(X) \) if and only if \(\{\rho(x), \rho(y)\} \in E(X) \). This shows that \(\rho \in \text{Aut}(X) \). \(\square \)
Properties of circulants:

1. Every vertex in $\text{Circ}(n, S)$ has degree $|S|$;
Properties of circulants:

1. Every vertex in $\text{Circ}(n, S)$ has degree $|S|$;
2. $\text{Circ}(n, S)$ is connected if and only if $\langle S \rangle = \mathbb{Z}_n$;
Properties of circulants:

1. Every vertex in $\text{Circ}(n, S)$ has degree $|S|$;
2. $\text{Circ}(n, S)$ is connected if and only if $\langle S \rangle = \mathbb{Z}_n$;
3. There is a polynomial time recognition algorithm for circulants;
Properties of circulants:

1. Every vertex in $\text{Circ}(n, S)$ has degree $|S|$;
2. $\text{Circ}(n, S)$ is connected if and only if $\langle S \rangle = \mathbb{Z}_n$;
3. There is a polynomial time recognition algorithm for circulants;
4. Isomorphism problem for circulant graphs can be solved in polynomial time.
The concept of circulant graphs can be generalized to the concept of Cayley graphs.

Definition

Let G be a finite group, and let S subset of G, such that $S = S^{-1}$ and $1_G \not\in S$. A **CAYLEY** graph $\text{Cay}(G, S)$ is defined as the graph with vertex set $V = G$ and edge set

$$E = \{\{x, x \cdot s\} \mid x \in G\}.$$
Example

\[G = \{1, a, b, c\} \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \ (a^2 = b^2 = c^2 = 1, \ ab = ba = c, \ ac = ca = b, \ bc = cb = a), \]
\[S = \{b, c\} \]

Figure: \(\text{Cay}(G, \{b, c\}) \)
Let $G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ and let $S = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$.
Let $G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ and let $S = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$.

To which graph is $\text{Cay}(G, S)$ isomorphic?

To the complete bipartite graph with parts of size $n! / 2$.

Ademir Hujdurović
Let $G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ and let $S = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$.

Let $G = S_n$, and let S be the set of all transpositions. To which graph is $\text{Cay}(G, S)$ isomorphic?

To the complete bipartite graph with parts of size $n! / 2$.
Let $G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ and let $S = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$.

Let $G = S_n$, and let S be the set of all transpositions. To which graph is $\text{Cay}(G, S)$ isomorphic?
To the complete bipartite graph with parts of size $n!/2$.

\[\text{Diagram showing a cube with vertices labeled (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1).} \]
Theorem

Every Cayley graph is vertex-transitive.
Theorem

Every Cayley graph is vertex-transitive.

Proof.
Let \(X = Cay(G, S) \), and let \(g \in G \) be arbitrary.
Theorem

Every Cayley graph is vertex-transitive.

Proof.

Let $X = \text{Cay}(G, S)$, and let $g \in G$ be arbitrary. Define mapping $g_L : G \rightarrow G$ with $g_L(x) = g \cdot x$, for all $x \in G$. It is easy to see that g_L is bijective mapping. Also, for an edge $\{x, xs\}$ its image under g_L is $\{gx, gxs\}$ which is again an edge in $\text{Cay}(G, S)$. Hence $g_L \in \text{Aut}(X)$, for every $g \in G$. Let x and y be two arbitrary vertices in X. Let $g = yx^{-1} \in G$. Then $g_L(x) = gx = (yx^{-1})x = y$, hence X is vertex-transitive.
Every Cayley graph is vertex-transitive.

Proof.
Let $X = \text{Cay}(G, S)$, and let $g \in G$ be arbitrary. Define mapping $g_L : G \to G$ with $g_L(x) = g \cdot x$, for all $x \in G$. It is easy to see that g_L is bijective mapping.
Theorem

Every Cayley graph is vertex-transitive.

Proof.

Let $X = \text{Cay}(G, S)$, and let $g \in G$ be arbitrary. Define mapping $g_L : G \to G$ with $g_L(x) = g \cdot x$, for all $x \in G$.

It is easy to see that g_L is bijective mapping.

Also, for an edge $\{x, xs\}$ its image under g_L is $\{gx, gxs\}$ which is again an edge in $\text{Cay}(G, S)$. Hence $g_L \in \text{Aut}(X)$, for every $g \in G$.
Theorem

Every Cayley graph is vertex-transitive.

Proof.

Let $X = Cay(G, S)$, and let $g \in G$ be arbitrary. Define mapping $g_L : G \to G$ with $g_L(x) = g \cdot x$, for all $x \in G$. It is easy to see that g_L is bijective mapping. Also, for an edge $\{x, xs\}$ its image under g_L is $\{gx, gxs\}$ which is again an edge in $Cay(G, S)$. Hence $g_L \in Aut(X)$, for every $g \in G$. Let x and y be two arbitrary vertices in X. Let $g = yx^{-1} \in G$. Then $g_L(x) = gx = (yx^{-1})x = y$, hence X is vertex-transitive.
Cayley graphs

If $G = \mathbb{Z}_n$, then we get a circulant graph, hence circulants are Cayley graphs on cyclic groups.
If $G = \mathbb{Z}_n$, then we get a circulant graph, hence circulants are Cayley graphs on cyclic groups.

Is every vertex-transitive graph Cayley?
Cayley graphs

If $G = \mathbb{Z}_n$, then we get a circulant graph, hence circulants are Cayley graphs on cyclic groups.

Is every vertex-transitive graph Cayley? NO.

Figure: Petersen graph is vertex-transitive but not Cayley
Definition

For a positive integer n, we say that n is a **CAYLEY NUMBER**, if every vertex-transitive graph of order n is a Cayley graph. Otherwise, n is said to be a **NON-CAYLEY NUMBER**.
Definition

For a positive integer n, we say that n is a **CAYLEY NUMBER**, if every vertex-transitive graph of order n is a Cayley graph. Otherwise, n is said to be a **NON-CAYLEY NUMBER**.

Since Petersen graph is vertex-transitive but not Cayley graph, and it has 10 vertices, it follows that 10 is a non-Cayley number.
Cayley numbers

Definition

For a positive integer n, we say that n is a **CAYLEY NUMBER**, if every vertex-transitive graph of order n is a Cayley graph. Otherwise, n is said to be a **NON-CAYLEY NUMBER**.

Since Petersen graph is vertex-transitive but not Cayley graph, and it has 10 vertices, it follows that 10 is a non-Cayley number.

Problem (Marušič, 1983)

Characterize Cayley (non-Cayley) numbers.
Cayley numbers

Definition

For a positive integer \(n \), we say that \(n \) is a CAYLEY NUMBER, if every vertex-transitive graph of order \(n \) is a Cayley graph. Otherwise, \(n \) is said to be a NON-CAYLEY NUMBER.

Since Petersen graph is vertex-transitive but not Cayley graph, and it has 10 vertices, it follows that 10 is a non-Cayley number.

Problem (Marušič, 1983)

Characterize Cayley (non-Cayley) numbers.

If \(n \) is a non-Cayley number, then any multiple \(kn \) of \(n \) is also a non-Cayley number. Namely, take \(k \) copies of a non-Cayley vertex transitive graph of order \(n \).
Cayley numbers

What is known?

Caley numbers

Numbers, \(p, p2, p3\) are Cayley numbers (Maru\text-superscript{a}€, 1983);

Numbers divisible by \(p4\) are non-Cayley; (Maru\text-superscript{a}€, 1983);

\(2p\) is a Cayley number when \(p \equiv 3 \) (mode 4) (Alspach and Sutclie, 1979);

Numbers divisible by \(p2\) are non-Cayley except for \(n = p2\), \(n = p3\) or \(n = 12\) (McKa\text-y and Praeger, 1996);

Cayley numbers that are a product of two distinct primes are classied (McKa\text-y and Praeger, 1996);

Cayley numbers that are products of three distinct primes are classied (Iranmanesh and Praeger, 2001);

There exists an infinite set \(S\) of primes such that every finite product of distinct elements from \(S\) is a Cayley number (Dobson and Spiga, 2016).
Cayley numbers

What is known?

- Numbers p, p^2, p^3 are Cayley numbers (Marušič, 1983);
Cayley numbers

What is known?

- Numbers p, p^2, p^3 are Cayley numbers (Marušič, 1983);
- Numbers divisible by p^4 are non-Cayley; (Marušič, 1983);
Cayley numbers

What is known?

- Numbers p, p^2, p^3 are Cayley numbers (Marušič, 1983);
- Numbers divisible by p^4 are non-Cayley; (Marušič, 1983);
- $2p$ is a Cayley number when $p \equiv 3 \pmod{4}$ (Alspach and Sutcliffe, 1979);
Cayley numbers

What is known?

- Numbers p, p^2, p^3 are Cayley numbers (Marušič, 1983);
- Numbers divisible by p^4 are non-Cayley; (Marušič, 1983);
- $2p$ is a Cayley number when $p \equiv 3 \pmod{4}$ (Alspach and Sutcliffe, 1979);
- Numbers divisible by p^2 are non-Cayley except for $n = p^2$, $n = p^3$ or $n = 12$ (McKay, Praeger, 1996);
Cayley numbers

What is known?

- Numbers p, p^2, p^3 are Cayley numbers (Marušič, 1983);
- Numbers divisible by p^4 are non-Cayley; (Marušič, 1983);
- $2p$ is a Cayley number when $p \equiv 3 \pmod{4}$ (Alspach and Sutcliffe, 1979);
- Numbers divisible by p^2 are non-Cayley except for $n = p^2$, $n = p^3$ or $n = 12$ (McKay, Praeger, 1996);
- Cayley numbers that are a product of two distinct primes are classified (McKay and Praeger, 1996);
Cayley numbers

What is known?

- Numbers p, p^2, p^3 are Cayley numbers (Marušič, 1983);
- Numbers divisible by p^4 are non-Cayley; (Marušič, 1983);
- $2p$ is a Cayley number when $p \equiv 3 \pmod{4}$ (Alspach and Sutcliffe, 1979);
- Numbers divisible by p^2 are non-Cayley except for $n = p^2$, $n = p^3$ or $n = 12$ (McKay, Praeger, 1996);
- Cayley numbers that are a product of two distinct primes are classified (McKay and Praeger, 1996);
- Cayley numbers that are products of three distinct primes are classified (Iranmanesh and Praeger, 2001);
- There exists an infinite set S of primes such that every finite product of distinct elements from S is a Cayley number (Dobson and Spiga, 2016).
Cayley numbers

What is known?

- Numbers p, p^2, p^3 are Cayley numbers (Marušič, 1983);
- Numbers divisible by p^4 are non-Cayley; (Marušič, 1983);
- $2p$ is a Cayley number when $p \equiv 3 \pmod{4}$ (Alspach and Sutcliffe, 1979);
- Numbers divisible by p^2 are non-Cayley except for $n = p^2$, $n = p^3$ or $n = 12$ (McKay, Praeger, 1996);
- Cayley numbers that are a product of two distinct primes are classified (McKay and Praeger, 1996);
- Cayley numbers that are products of three distinct primes are classified (Iranmanesh and Praeger, 2001);
- There exists an infinite set S of primes such that every finite product of distinct elements from S is a Cayley number (Dobson and Spiga, 2016).
Is it possible to enumerate vertex-transitive graphs of order n?

The only known result for enumeration of vertex-transitive graphs of order n is when $n = p$ is a prime.

Theorem (Turner, 1967)

The number of vertex-transitive graphs with prime number of vertices p, is equal to

$$
\sum_{d | m} \phi(d) \cdot 2^{m/d},
$$

where $m = \left(p - 1 \right) / 2$ and ϕ is the Euler's totient function.

Proof idea: Every vertex-transitive graph of prime order is in fact a circulant $\text{Circ}(p, S)$.

Turner also proved two circulants of prime order $\text{Circ}(p, S_1)$ and $\text{Circ}(p, S_2)$ are isomorphic if and only if there exists $k \in \mathbb{Z}^*$ such that $kS_1 = S_2$.

Therefore, in order to count the number of vertex-transitive graphs of order p, it suffices to count the number of orbits in the action of \mathbb{Z}^*_p on the subsets of \mathbb{Z}_p.

Ademir Hujdurović

Symmetries of graphs
Is it possible to enumerate vertex-transitive graphs of order n? The only known result for enumeration of vertex-transitive graphs of order n is when $n = p$ is a prime.
Is it possible to enumerate vertex-transitive graphs of order n? The only known result for enumeration of vertex-transitive graphs of order n is when $n = p$ is a prime.

Theorem (Turner, 1967)

The number of vertex-transitive graphs with prime number of vertices p, is equal to \(\frac{1}{m} \sum_{d|m} \varphi(d) \cdot 2^m \), where $m = (p - 1)/2$ and φ is the Euler’s totient function.
Is it possible to enumerate vertex-transitive graphs of order n? The only known result for enumeration of vertex-transitive graphs of order n is when $n = p$ is a prime.

Theorem (Turner, 1967)

The number of vertex-transitive graphs with prime number of vertices p, is equal to $\frac{1}{m} \sum_{d \mid m} \varphi(d) \cdot 2^{m/d}$, where $m = (p - 1)/2$ and φ *is the Euler’s totient function.*

Proof idea: Every vertex-transitive graph of prime order is in fact a circulant $Circ(p, S)$.
Is it possible to enumerate vertex-transitive graphs of order \(n \)?

The only known result for enumeration of vertex-transitive graphs of order \(n \) is when \(n = p \) is a prime.

Theorem (Turner, 1967)

The number of vertex-transitive graphs with prime number of vertices \(p \), is equal to

\[
\frac{1}{m} \sum_{d|m} \varphi(d) \cdot 2^{\frac{m}{d}},
\]

where \(m = (p - 1)/2 \) and \(\varphi \) is the Euler’s totient function.

Proof idea: Every vertex-transitive graph of prime order is in fact a circulant \(\text{Circ}(p, S) \). Turner also proved two circulants of prime order \(\text{Circ}(p, S_1) \) and \(\text{Circ}(p, S_2) \) are isomorphic if and only if there exists \(k \in \mathbb{Z}_n^{*} \) such that \(kS_1 = S_2 \).
Is it possible to enumerate vertex-transitive graphs of order \(n \)?
The only known result for enumeration of vertex-transitive graphs of order \(n \) is when \(n = p \) is a prime.

Theorem (Turner, 1967)

The number of vertex-transitive graphs with prime number of vertices \(p \), is equal to \(\frac{1}{m} \sum_{d|m} \varphi(d) \cdot 2^\frac{m}{d} \), where \(m = (p - 1)/2 \) and \(\varphi \) is the Euler’s totient function.

Proof idea: Every vertex-transitive graph of prime order is in fact a circulant \(\text{Circ}(p, S) \). Turner also proved two circulants of prime order \(\text{Circ}(p, S_1) \) and \(\text{Circ}(p, S_2) \) are isomorphic if and only if there exists \(k \in \mathbb{Z}_n^* \) such that \(kS_1 = S_2 \). Therefore, in order to count the number of vertex-transitive graphs of order \(p \), it suffices to count the number of orbits in the action of \(\mathbb{Z}_p^* \) on the subsets of \(\mathbb{Z}_p \).
Vertex-transitive graphs

<table>
<thead>
<tr>
<th>n</th>
<th>Connected VT graphs</th>
<th>n</th>
<th>Connected VT graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>17</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>18</td>
<td>365</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>19</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>20</td>
<td>1190</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>21</td>
<td>235</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>22</td>
<td>807</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>23</td>
<td>187</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>24</td>
<td>15422</td>
</tr>
<tr>
<td>10</td>
<td>18</td>
<td>25</td>
<td>461</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>26</td>
<td>4221</td>
</tr>
<tr>
<td>12</td>
<td>64</td>
<td>27</td>
<td>1425</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>28</td>
<td>25792</td>
</tr>
<tr>
<td>14</td>
<td>51</td>
<td>29</td>
<td>1181</td>
</tr>
<tr>
<td>15</td>
<td>44</td>
<td>30</td>
<td>46236</td>
</tr>
<tr>
<td>16</td>
<td>272</td>
<td>31</td>
<td>2191</td>
</tr>
</tbody>
</table>

Table: Number of connected vertex-transitive graphs of order $n \leq 31$.
Definition

For a connected graph X, the **EDGE CONNECTIVITY** is the minimum number of edges such that the graph obtained after deleting those edges is disconnected, and will be denoted by $\kappa_1(X)$.
For a connected graph X, the **edge connectivity** is the minimum number of edges such that the graph obtained after deleting those edges is disconnected, and will be denoted by $\kappa_1(X)$.

It is clear that for every graph X, it holds $\kappa_1(X) \leq \delta(X)$, where $\delta(X)$ is the minimum degree in X.
Definition
For a connected graph X, the **EDGE CONNECTIVITY** is the minimum number of edges such that the graph obtained after deleting those edges is disconnected, and will be denoted by $\kappa_1(X)$.

It is clear that for every graph X, it holds $\kappa_1(X) \leq \delta(X)$, where $\delta(X)$ is the minimum degree in X.

Theorem
If X is a connected vertex-transitive graph, then its edge connectivity is equal to its degree.
Definition

For a connected graph X, the **VERTEX-CONNECTIVITY** is the minimum number of vertices such that the graph obtained after deleting those vertices is disconnected, and will be denoted by $\kappa(X)$.

For every graph X, it holds that $\kappa(X) \leq \delta(X)$.

Theorem

Let X be a connected vertex-transitive graph with degree d. Then $\kappa(X) \geq 2d + 1$.

Ademir Hujdurović
Symmetries of graphs
Definition

For a connected graph X, the VERTEX-CONNECTIVITY is the minimum number of vertices such that the graph obtained after deleting those vertices is disconnected, and will be denoted by $\kappa(X)$.

For every graph X, it holds that $\kappa(X) \leq \delta(X)$.
Definition

For a connected graph X, the **VERTEX-CONNECTIVITY** is the minimum number of vertices such that the graph obtained after deleting those vertices is disconnected, and will be denoted by $\kappa(X)$.

For every graph X, it holds that $\kappa(X) \leq \delta(X)$.

Theorem

Let X be a connected vertex-transitive graph with degree d. Then $\kappa(X) \geq 2^{d+1}$.

Ademir Hujdurović Symmetries of graphs
Definition

A MATCHING M in a graph X is a set of edges such that no two have a vertex in common. A matching that covers every vertex of X is called a PERFECT MATCHING or a 1-factor. A MAXIMUM MATCHING is a matching with the maximum possible number of edges.
Definition
A MATCHING \(M \) in a graph \(X \) is a set of edges such that no two have a vertex in common. A matching that covers every vertex of \(X \) is called a PERFECT MATCHING or a 1-factor. A MAXIMUM MATCHING is a matching with the maximum possible number of edges.

Theorem
Let \(X \) be a connected vertex-transitive graph. Then \(X \) has a matching that misses at most one vertex, and each edge is contained in a maximum matching.
Hamiltonicity of VT graphs

Definition

A HAMILTON PATH in a graph is a path that meets every vertex, and a HAMILTON CYCLE is a cycle that meets every vertex.
A HAMILTON PATH in a graph is a path that meets every vertex, and a HAMILTON CYCLE is a cycle that meets every vertex. All known vertex-transitive graphs have Hamilton...
Definition
A HAMILTON PATH in a graph is a path that meets every vertex, and a HAMILTON CYCLE is a cycle that meets every vertex.

All known vertex-transitive graphs have Hamilton paths.

Conjecture
Every connected vertex-transitive graph contains a Hamilton path.
Hamiltonicity of VT graphs

Definition

A HAMILTON PATH in a graph is a path that meets every vertex, and a HAMILTON CYCLE is a cycle that meets every vertex.

All known vertex-transitive graphs have Hamilton paths.

Conjecture

Every connected vertex-transitive graph contains a Hamilton path.

There are only 5 known vertex-transitive graphs without Hamilton cycle. They are

- K_2;
- Petersen graph;
- Truncated Petersen graph;
- Coxeter graph;
- Truncated Coxeter graph.
Truncated Petersen graph
Except for K_2, none of the five known vertex-transitive graphs without hamilton cycle is Cayley graph. This has lead to the following "Folklore" conjecture.
Except for K_2, none of the five known vertex-transitive graphs without hamilton cycle is Cayley graph. This has lead to the following "Folklore" conjecture.

Conjecture

Every connected Cayley graph of order at least 3 contains a Hamilton cycle.
Except for K_2, none of the five known vertex-transitive graphs without a Hamilton cycle is a Cayley graph. This has led to the following "Folklore" conjecture.

<table>
<thead>
<tr>
<th>Conjecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every connected Cayley graph of order at least 3 contains a Hamilton cycle.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conjecture (Thomasen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are finitely many connected vertex-transitive graphs without a Hamilton cycle.</td>
</tr>
</tbody>
</table>
Except for K_2, none of the five known vertex-transitive graphs without hamilton cycle is Cayley graph. This has lead to the following "Folklore" conjecture.

Conjecture

Every connected Cayley graph of order at least 3 contains a Hamilton cycle.

Conjecture (Thomasen)

There are finitely many connected vertex-transitive graphs without Hamilton cycle.

Conjecture (Babai)

There are infinitely many connected vertex-transitive graphs (or Cayley graphs) without Hamilton cycle.
Theorem (Chen and Quimpo, 1981)

Every connected Cayley graph on abelian group of order at least 3 contains a Hamilton cycle.
Hamiltonicity of VT graphs

Theorem (Chen and Quimpo, 1981)

Every connected Cayley graph on abelian group of order at least 3 contains a Hamilton cycle.

To prove this, we need to define Cartesian product of graphs.

Definition

The Cartesian product $X \square Y$ of two graphs X and Y is the graph with vertex set $V(X) \times V(Y)$ and two vertices (x_1, y_1) and (x_2, y_2) are adjacent if and only if $x_1 = x_2$ and $\{y_1, y_2\} \in E(Y)$ or $y_1 = y_2$ and $\{x_1, x_2\} \in E(X)$.

Exercise

Prove that the Cartesian product of two vertex-transitive (resp. Cayley) graphs is vertex-transitive (resp. Cayley) graph.
Theorem (Chen and Quimpo, 1981)

Every connected Cayley graph on abelian group of order at least 3 contains a Hamilton cycle.

To prove this, we need to define Cartesian product of graphs.

Definition

The Cartesian product $X \square Y$ of two graphs X and Y is the graph with vertex set $V(X) \times V(Y)$ and two vertices (x_1, y_1) and (x_2, y_2) are adjacent if and only if $x_1 = x_2$ and $(y_1, y_2) \in E(Y)$ or $y_1 = y_2$ and $(x_1, x_2) \in E(X)$.

Exercise

Prove that the Cartesian product of two vertex-transitive (resp. Cayley) graphs is vertex-transitive (resp. Cayley) graph.
Let $X = Cay(G, S)$, where G is abelian group, $|G| \geq 3$ and $\langle S \rangle = G$.
Let $X = Cay(G, S)$, where G is abelian group, $|G| \geq 3$ and $\langle S \rangle = G$. Proof is by induction on $|S|$. If $|S| = 1$, then the result trivially follows.
Let $X = Cay(G, S)$, where G is abelian group, $|G| \geq 3$ and $\langle S \rangle = G$. Proof is by induction on $|S|$. If $|S| = 1$, then the result trivially follows.

If $|S| = 2$, then either $S = \{a, a^{-1}\}$ or $S = \{a, b\}$ with $a^{-1} = a$, $b^{-1} = b$. In the first case, we have a Hamilton cycle $1 - a - a^2 - \ldots$.
Let $X = \text{Cay}(G, S)$, where G is abelian group, $|G| \geq 3$ and $\langle S \rangle = G$. Proof is by induction on $|S|$. If $|S| = 1$, then the result trivially follows.

If $|S| = 2$, then either $S = \{a, a^{-1}\}$ or $S = \{a, b\}$ with $a^{-1} = a$, $b^{-1} = b$. In the first case, we have a Hamilton cycle $1 - a - a^2 - \ldots$.

In the second case, we have that G is abelian group generated by two involutions. Hence $G = \mathbb{Z}_2 \times \mathbb{Z}_2$.

Ademir Hujdurović
Symmetries of graphs
Let $X = \text{Cay}(G, S)$, where G is abelian group, $|G| \geq 3$ and \langle S \rangle = G$. Proof is by induction on $|S|$. If $|S| = 1$, then the result trivially follows.

If $|S| = 2$, then either $S = \{a, a^{-1}\}$ or $S = \{a, b\}$ with $a^{-1} = a$, $b^{-1} = b$. In the first case, we have a Hamilton cycle $1 - a - a^2 - \ldots$.

In the second case, we have that G is abelian group generated by two involutions. Hence $G = \mathbb{Z}_2 \times \mathbb{Z}_2$.

If $|S| \geq 3$, then we define $T = S \setminus \{a, a^{-1}\}$ for some $a \in S$. Let $M = \langle T \rangle$. The subgraph of X induced by M is isomorphic to $\text{Cay}(M, T)$, which contains hamiltonian cycle by induction hypothesis. Using the fact that G is abelian, one can see that X has a subgraph isomorphic to the Cartesian product $\text{Cay}(M, T) \square P_k$, where k is the smallest integer such that $a^k \in M$.
Definition

Dihedral group of order $2n$ is

$$D_{2n} = \langle \rho, \tau \mid \rho^n = \tau^2 = 1, \tau \rho = \rho^{-1} \tau \rangle.$$
Definition

Dihedral group of order $2n$ is

$$D_{2n} = \langle \rho, \tau \mid \rho^n = \tau^2 = 1, \tau \rho = \rho^{-1} \tau \rangle.$$

Theorem (Alspach, Zhang, 1989)

Every connected cubic (that is 3-regular) Cayley graph on dihedral group contains a Hamilton cycle.
Definition

Dihedral group of order $2n$ is

$$D_{2n} = \langle \rho, \tau \mid \rho^n = \tau^2 = 1, \tau \rho = \rho^{-1} \tau \rangle.$$

Theorem (Alspach, Zhang, 1989)

Every connected cubic (that is 3-regular) Cayley graph on dihedral group contains a Hamilton cycle.

Problem

Does every connected Cayley graph on dihedral group D_{2n} contain a Hamilton cycle?
Theorem (Witte, 1986)

Every connected Cayley graph on a p-group contains a Hamilton cycle.

Theorem (Keating and Witte, 1985)

Every connected Cayley graph of a group with a cyclic commutator subgroup of prime power order, has a Hamilton cycle.

Theorem (Alspach, Chen and Dean, 2010)

Every connected Cayley graph on a generalized Dihedral group whose order is divisible by 4 contains a Hamilton cycle.
Hamiltonicity of VT graphs

Let p denote a prime.

Theorem

Let X be a connected vertex-transitive graph of order p. Then X contains a Hamilton cycle.

Theorem (Alspach, 1979)

Every connected vertex-transitive graph of order $2p$ contains a Hamilton cycle, unless it is isomorphic to the Petersen graph.

Theorem (Marušič, 1985)

Vertex-transitive graphs of order p^2 and p^3 contain a Hamilton cycle.

Theorem (Marušič, 1987)

Vertex-transitive graphs of order $2p^2$ contain a Hamilton cycle.
Hamiltonicity of VT graphs

Let p denote a prime.

Theorem

Let X be a connected vertex-transitive graph of order p. Then X contains a Hamilton cycle.

Theorem (Alspach, 1979)

Every connected vertex-transitive graph of order $2p$ contains a Hamilton cycle, unless it is isomorphic to the Petersen graph.
Let p denote a prime.

Theorem

Let X be a connected vertex-transitive graph of order p. Then X contains a Hamilton cycle.

Theorem (Alspach, 1979)

Every connected vertex-transitive graph of order $2p$ contains a Hamilton cycle, unless it is isomorphic to the Petersen graph.

Theorem (Marušič, 1985)

Vertex-transitive graphs of order p^2 and p^3 contain a Hamilton cycle.
Let p denote a prime.

Theorem

Let X be a connected vertex-transitive graph of order p. Then X contains a Hamilton cycle.

Theorem (Alspach, 1979)

Every connected vertex-transitive graph of order $2p$ contains a Hamilton cycle, unless it is isomorphic to the Petersen graph.

Theorem (Marušič, 1985)

Vertex-transitive graphs of order p^2 and p^3 contain a Hamilton cycle.

Theorem (Marušič, 1987)

Vertex-transitive graphs of order $2p^2$ contain a Hamilton cycle.
Theorem (Marušič, 1988)

Vertex-transitive graphs of order $3p$ contain a Hamilton cycle.
Theorem (Marušič, 1988)

Vertex-transitive graphs of order $3p$ contain a Hamilton cycle.

Theorem (Chen, 1988)

Vertex-transitive graphs of order p^4 contain a Hamilton cycle.
Hamiltonicity of VT graphs

Theorem (Marušič, 1988)

Vertex-transitive graphs of order $3p$ contain a Hamilton cycle.

Theorem (Chen, 1988)

Vertex-transitive graphs of order p^4 contain a Hamilton cycle.

Theorem (Kutnar and Marušič, 2008)

Vertex-transitive graphs of order $4p$ contain a Hamilton cycle except for the Coxeter graph.
Theorem (Marušič, 1988)
Vertex-transitive graphs of order $3p$ contain a Hamilton cycle.

Theorem (Chen, 1988)
Vertex-transitive graphs of order p^4 contain a Hamilton cycle.

Theorem (Kutnar and Marušič, 2008)
Vertex-transitive graphs of order $4p$ contain a Hamilton cycle except for the Coxeter graph.

Theorem (Zhang, 2015)
Vertex-transitive graphs of order p^5 contain a Hamilton cycle.
Thank you!!!